

    
      
          
            
  
Welcome to Yandex.Tank’s documentation!


	Author

	Alexey Lavrenuke [https://github.com/direvius]



	Version

	1.9.8



	Date

	Oct 31, 2019



	Homepage

	Yandex.Tank Homepage on Github [https://github.com/yandex-load/yandex-tank]



	Download

	Launchpad PPA [https://launchpad.net/~yandex-load/+archive/main] Pypi [https://pypi.python.org/pypi/yandextank/]



	Documentation

	PDF Documentation [https://media.readthedocs.org/pdf/yandextank/latest/yandextank.pdf]



	License

	GNU LGPLv3 [http://www.gnu.org/licenses/lgpl.html]



	Issue tracker

	GitHub Issues [http://github.com/yandex-load/yandex-tank/issues]





Contents:



	Getting started
	Getting Help

	What are the Yandex.Tank components?

	Running Yandex.Tank

	See also





	Installation
	Docker container

	Installation from PyPi

	Installation .deb packages





	Routing and firewall
	Firewall

	Routing

	Tuning





	Tutorials
	Preparing requests
	Access mode

	URI-style, URIs in load.yaml

	URI-style, URIs in file

	URI+POST-style

	Request-style





	Run Test!

	Results

	Tags

	SSL

	Autostop
	HTTP and Net codes conditions

	Average time conditions





	Logging

	Results in phout

	Graph and statistics

	Precise timings

	Thread limit

	Dynamic thread limit

	Custom stateless protocol

	Gatling





	Advanced usage
	Command line options

	Advanced configuration
	Default configuration files

	The DEFAULT section

	Multiline options

	Referencing one option to another

	Time units

	Shell-options





	Artifacts

	Sources

	load.ini example





	Modules
	TankCore
	Architecture

	Test lifecycle

	Options

	consoleworker

	apiworker

	exit codes





	Load Generators
	Phantom

	JMeter

	BFG

	Pandora





	Artifact uploaders
	Yandex.Overload





	Handy tools
	Auto-stop

	Telegraf

	Console on-line screen

	Aggregator

	ShellExec

	Resource Check

	RC Assert

	Tips&Tricks

	BatteryHistorian

	SvgReport





	Deprecated
	Monitoring









	Ammo generators

	Config reference
	Android
	volta_options (dict)





	Appium
	appium_cmd (string)

	port (string)

	user (string)





	Autostop
	autostop (list of string)

	report_file (string)





	BatteryHistorian
	device_id (string)





	Bfg
	address (string)

	ammo_limit (integer)

	ammo_type (string)

	ammofile (string)

	autocases (integer or string)

	cache_dir (string)

	cached_stpd (boolean)

	chosen_cases (string)

	enum_ammo (boolean)

	file_cache (integer)

	force_stepping (integer)

	green_threads_per_instance (integer)

	gun_config (dict)

	gun_type (string)

	header_http (string)

	headers (list of string)

	instances (integer)

	load_profile (dict)

	loop (integer)

	pip (string)

	uris (list of string)

	use_caching (boolean)

	worker_type (string)





	Console
	cases_max_spark (integer)

	cases_sort_by (string)

	disable_all_colors (boolean)

	disable_colors (string)

	info_panel_width (integer)

	max_case_len (integer)

	short_only (boolean)

	sizes_max_spark (integer)

	times_max_spark (integer)





	DataUploader
	api_address (string)

	api_attempts (integer)

	api_timeout (integer)

	chunk_size (integer)

	component (string)

	connection_timeout (integer)

	ignore_target_lock (boolean)

	job_dsc (string)

	job_name (string)

	jobno_file (string)

	jobno (string)

	lock_targets (list or string)

	log_data_requests (boolean)

	log_monitoring_requests (boolean)

	log_other_requests (boolean)

	log_status_requests (boolean)

	maintenance_attempts (integer)

	maintenance_timeout (integer)

	meta (dict)

	network_attempts (integer)

	network_timeout (integer)

	notify (list of string)

	operator (string)

	regress (boolean)

	send_status_period (integer)

	strict_lock (boolean)

	target_lock_duration (string)

	task (string)

	threads_timeout (integer)

	token_file (string)

	upload_token (string)

	ver (string)

	writer_endpoint (string)





	Influx
	address (string)

	chunk_size (integer)

	database (string)

	grafana_dashboard (string)

	grafana_root (string)

	password (string)

	port (integer)

	tank_tag (string)

	username (string)





	JMeter
	args (string)

	buffer_size (integer)

	buffered_seconds (integer)

	exclude_markers (list of string)

	ext_log (string)

	extended_log (string)

	jmeter_path (string)

	jmeter_ver (float)

	jmx (string)

	shutdown_timeout (integer)

	variables (dict)





	JsonReport
	monitoring_log (string)

	test_data_log (string)





	Pandora
	buffered_seconds (integer)

	config_content (dict)

	config_file (string)

	expvar (boolean)

	pandora_cmd (string)





	Phantom
	additional_libs (list of string)

	address (string)

	affinity (string)

	ammo_limit (integer)

	ammo_type (string)

	ammofile (string)

	autocases (integer or string)

	buffered_seconds (integer)

	cache_dir (string)

	chosen_cases (string)

	client_certificate (string)

	client_cipher_suites (string)

	client_key (string)

	config (string)

	connection_test (boolean)

	enum_ammo (boolean)

	file_cache (integer)

	force_stepping (integer)

	gatling_ip (string)

	header_http (string)

	headers (list of string)

	instances (integer)

	load_profile (dict)

	loop (integer)

	method_options (string)

	method_prefix (string)

	phantom_http_entity (string)

	phantom_http_field_num (integer)

	phantom_http_field (string)

	phantom_http_line (string)

	phantom_modules_path (string)

	phantom_path (string)

	phout_file (string)

	port (string)

	source_log_prefix (string)

	ssl (boolean)

	tank_type (string)

	threads (integer)

	timeout (string)

	uris (list of string)

	use_caching (boolean)

	writelog (string)





	RCAssert
	fail_code (integer)

	pass (string)





	ResourceCheck
	disk_limit (integer)

	interval (string)

	mem_limit (integer)





	ShellExec
	catch_out (boolean)

	end (string)

	poll (string)

	post_process (string)

	prepare (string)

	start (string)





	ShootExec
	cmd (string)

	output_path (string)

	stats_path (string)





	Telegraf
	config_contents (string)

	config (string)

	default_target (string)

	disguise_hostnames (boolean)

	kill_old (boolean)

	ssh_timeout (string)
















Indices and tables


	Index


	Module Index


	Search Page




[image: http://mc.yandex.ru/watch/23073253]




          

      

      

    

  

    
      
          
            
  
Getting started

Welcome to Yandex.Tank documentation. Yandex.Tank is an extensible load testing utility for unix systems. It is written in Python and uses different load generator modules in different languages.


Getting Help

Gitter.im [https://gitter.im/yandex/yandex-tank]




What are the Yandex.Tank components?


	Core - basic steps of test prepare, configuration, execution. Artifacts storing. Controls plugins/modules.


	Load generators -  modules that uses and controls load generators (load generators NOT included).


	Artifact uploaders - modules that uploads artifacts to external storages and services.


	Handy tools - monitoring tools, console online screen, autostops and so on.





Note

Using phantom as a load generator for mild load tests (less then 1000rps) an average laptop with 64bit Ubuntu (10.04/…/13.10) would be sufficient. The tank could be easily used in virtual machine if queries aren’t too heavy and load isn’t too big. Otherwise it is recommended to request a physical server or a more capable virtual machine from your admin.






Running Yandex.Tank

1.Install tank to your system Installation

2.Tune your system Routing and firewall

3.And run the tutorial Tutorials



4.If you are skilled enough, feel free to use Advanced usage.

5.For developers Modules.




See also

Evgeniy Mamchits’ phantom [https://github.com/mamchits/phantom] -
Phantom scalable IO Engine

Alexey Lavrenuke’s pandora [https://github.com/yandex/pandora] -
A load generator in Go language

Gregory Komissarov’s
firebat [https://github.com/greggyNapalm/firebat-console] - test tool
based on Phantom

BlazeMeter’s Sense [http://sense.blazemeter.com/] - service for
storing and analysing performance test results







          

      

      

    

  

    
      
          
            
  
Installation


Docker container

Install [https://www.docker.com/products/overview] docker and use direvius/yandex-tank (or, if you need jmeter, try direvius/yandex-tank-jmeter) container.
Default entrypoint is /usr/local/bin/yandex-tank so you may just run it to start test:

docker run \
    -v $(pwd):/var/loadtest \
    -v $SSH_AUTH_SOCK:/ssh-agent -e SSH_AUTH_SOCK=/ssh-agent \
    --net host \
    -it direvius/yandex-tank






	$(pwd):/var/loadtest - current directory mounted to /var/loadtest in container to pass data for test
(config file, monitoring config, ammo, etc)


	tank will use load.yaml from current directory as default config,
append -c custom-config-name.yaml to run with other config


	you may pass other additional parameters for tank in run command, just append it after image name


	$SSH_AUTH_SOCK:/ssh-agent - ssh agent socket mounted in order to provide use telegraf plugin (monitoring). It uses your ssh keys to remotely login to monitored hosts




If you want to do something in the container before running tank, you will need to change entrypoint:

docker run \
    -v $(pwd):/var/loadtest \
    -v $SSH_AUTH_SOCK:/ssh-agent -e SSH_AUTH_SOCK=/ssh-agent \
    --net host \
    -it \
    --entrypoint /bin/bash \
    direvius/yandex-tank





Start test Within container with yandex-tank command:

yandex-tank -c config-name.yaml # default config is load.yaml








Installation from PyPi

These are the packages that are required to build different python libraries. Install them with apt:

sudo apt-get install python-pip build-essential python-dev libffi-dev gfortran libssl-dev





Update your pip:

sudo -H pip install --upgrade pip





Update/install your setuptools:

sudo -H pip install --upgrade setuptools





Install latest Yandex.Tank from master branch:

sudo -H pip install https://api.github.com/repos/yandex/yandex-tank/tarball/master





You’ll probably need Phantom load generator, so install it from our ppa:

sudo add-apt-repository ppa:yandex-load/main && sudo apt-get update
sudo apt-get install phantom phantom-ssl








Installation .deb packages


Note

Deprecated. Deb packages aren’t renewed in PPA.



You should add proper repositories on Debian-based environment.

For instance, add following repos to sources.list :

deb http://ppa.launchpad.net/yandex-load/main/ubuntu trusty main
deb-src http://ppa.launchpad.net/yandex-load/main/ubuntu trusty main





or this way

sudo apt-get install python-software-properties
sudo apt-get install software-properties-common
sudo add-apt-repository ppa:yandex-load/main





Then update package list and install yandex-tank package:

sudo apt-get update && sudo apt-get install yandex-tank











          

      

      

    

  

    
      
          
            
  
Routing and firewall


Firewall

Before test execution, please, check service availability. If service is
running on server with IP x.x.x.x and listening for TCP port zz, try to
connect to it with telnet like this: telnet x.x.x.x zz If
everything OK, you’ll see:

$ telnet 203.0.113.1 80
Trying 203.0.113.1...
Connected to 203.0.113.1. Escape character is '^]'.





Otherwise if port is unreachable:

$ telnet 203.0.113.1 80 Trying 203.0.113.1...
telnet: Unable to connect to remote host: Connection timed out






Note

it’s just an example, programs like nc/nmap/wget/curl could be used as well, but not ping!)






Routing

OK, service is reachable, next thing
you should know is how far Yandex.Tank is located from the service you’d
like to test. Heavy load can make switch to be unresponsible or to
reboot, or at least it may lead to network losses, so the test results
would be distorted. Be careful. Path estimation could be done by
execution of tracepath command or it analogs
(tracert/traceroute) on Yandex.Tank machine:

$ tracepath 203.0.113.1
1:  tank.example.com (203.0.113.1)            0.084ms pmtu 1450
1:  target.load.example.com (203.0.113.1)           20.919ms reached
1:  target.example.com (203.0.113.1)            0.128ms reached
Resume: pmtu 1450 hops 1 back 64``
Hops count = 1 means that tank and target are in closest location.

$ tracepath 24.24.24.24
1:  1.example.com (203.0.113.1)                 0.084ms pmtu 1450
1:  2.example.com (203.0.113.1)          0.276ms
1:  3.example.com (203.0.113.1)          0.411ms
2:  4.example.com (203.0.113.1)                0.514ms
3:  5.example.com (203.0.113.1)              10.690ms
4:  6.example.com (203.0.113.1)                  0.831ms asymm  3
5:  7.example.com (203.0.113.1)                 0.512ms
6:  8.example.com (203.0.113.1)                 0.525ms asymm  5
7:  no reply





In second example you’d better find another closer located tank.




Tuning

To achieve the top most performance you should tune the source server
system limits:

ulimit -n 30000

net.ipv4.tcp_max_tw_buckets = 65536
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_tw_reuse = 0
net.ipv4.tcp_max_syn_backlog = 131072
net.ipv4.tcp_syn_retries = 3
net.ipv4.tcp_synack_retries = 3
net.ipv4.tcp_retries1 = 3
net.ipv4.tcp_retries2 = 8
net.ipv4.tcp_rmem = 16384 174760 349520
net.ipv4.tcp_wmem = 16384 131072 262144
net.ipv4.tcp_mem = 262144 524288 1048576
net.ipv4.tcp_max_orphans = 65536
net.ipv4.tcp_fin_timeout = 10
net.ipv4.tcp_low_latency = 1
net.ipv4.tcp_syncookies = 0
net.netfilter.nf_conntrack_max = 1048576






Note

tcp_tw_recycle has been removed as of Linux 4.12.

This is because Linux now randomizes timestamps per connection and they do not monotonically increase. If you’re using Linux 4.12 with machines using tcp_tw_recycle and TCP timestamps are turned on you will see dropped connections. You can of course disable it like so echo 0 > /proc/sys/net/ipv4/tcp_timestamps (temporarily, use sysctl.conf for permanent changes).

Details on 4.12 removing tcp_tw_recycle:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4396e46187ca5070219b81773c4e65088dac50cc









          

      

      

    

  

    
      
          
            
  
Tutorials

So, you’ve installed Yandex.Tank to a proper machine, it is close to target,
access is permitted and server is tuned. How to make a test?


Note

This guide is for phantom load generator.



Create a file on a server with Yandex.Tank: load.yaml

phantom:
  address: 203.0.113.1:80 # [Target's address]:[target's port]
  load_profile:
    load_type: rps # schedule load by defining requests per second
    schedule: line(1, 10, 10m) # starting from 1rps growing linearly to 10rps during 10 minutes
telegraf:
  enabled: false # let's disable telegraf monitoring for this time





phantom have 3 primitives for describing load scheme:



1. step (a,b,step,dur) makes stepped load, where a,b are start/end load
values, step - increment value, dur - step duration.


	Example:

	step(25, 5, 5, 60) - stepped load from 25 to 5 rps, with 5 rps steps,
step duration 60s. step(5, 25, 5, 60) - stepped load from 5 to 25 rps,
with 5 rps steps, step duration 60s







2. line (a,b,dur) makes linear load, where a,b are start/end load, dur
- the time for linear load increase from a to b.


	Example:

	line(10, 1, 10m) - linear load from 10 to 1 rps, duration - 10
minutes line(1, 10, 10m) - linear load from 1 to 10 rps, duration
- 10 minutes







3. const (load,dur) makes constant load. load - rps amount, dur
- load duration.


Note

const(0, 10) - 0 rps for 10 seconds,
in fact 10s pause in a test.




	Example:

	const(10,10m) - constant load for 10 rps for 10 minutes.








Note

You can set fractional load like this: line(1.1, 2.5, 10)
– from 1.1rps to 2.5 for 10 seconds.




Note

step and line could be used with increasing and decreasing intensity:



You can specify complex load schemes using those primitives.


	Example:

	schedule: line(1, 10, 10m) const(10,10m)

linear load from 1 to 10rps during 10 minutes, then 10 minutes of 10rps constant load.





Time duration could be defined in seconds, minutes (m) and hours (h).
For example: 27h103m645

For a test with constant load at 10rps for 10 minutes, load.yaml should
have following lines:

phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: rps
    schedule: const(10, 10m)
telegraf:
  enabled: false # let's disable telegraf monitoring for this time






Preparing requests


	There are several ways to set up requests:

	
	Access mode


	URI-style


	URI+POST


	request-style.









Note

Request-style is default ammo type.




Note

Regardless of the chosen format, resulted file with requests could be gzipped - tank supports archived ammo files.



To specify external ammo file use ammofile option.


Note

You can specify URL to ammofile, http(s). Small ammofiles (~<100MB) will be downloaded as is, to directory /tmp/<hash>, large files will be readed from stream.




Note

If ammo type is uri-style or request-style, tank will try to guess it.
Use ammo_type option to explicitly specify ammo format. Don’t forget to change ammo_type option
if you switch format of your ammo, otherwise you might get errors.

Example:

phantom:
  address: 203.0.113.1:80
  ammofile: https://yourhost.tld/path/to/ammofile.txt








Access mode

YAML-file configuration: ammo_type: access

You can use access.log file from your webserver as a source of requests.
Just add to load.yaml options ammo_type: access and ammofile: /tmp/access.log
where /tmp/access.log is a path to access.log file.

phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: rps
    schedule: line(1, 10, 10m)
  header_http: '1.1'
  headers: |
      [Host: www.target.example.com]
      [Connection: close]
  ammofile: /tmp/access.log
  ammo_type: access
telegraf:
  enabled: false # let's disable telegraf monitoring for this time





Parameter headers defines headers values (if it necessary).




URI-style, URIs in load.yaml

YAML-file configuration: Don’t specify ammo_type explicitly for this type of ammo.

Update configuration file with HTTP headers and URIs:

phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: rps
    schedule: line(1, 10, 10m)
  header_http: '1.1'
  headers: |
    [Host: www.target.example.com]
    [Connection: close]
  uris: |
    /
    /buy
    /sdfg?sdf=rwerf
    /sdfbv/swdfvs/ssfsf
telegraf:
  enabled: false # let's disable telegraf monitoring for this time





Parameter uris contains uri, which should be used for requests generation.


Note

Pay attention to sample above, because whitespaces in multiline uris and headers options are important.






URI-style, URIs in file

YAML-file configuration: ammo_type: uri

Create a file with declared requests: ammo.txt

[Connection: close]
[Host: target.example.com]
[Cookie: None]
/?drg tag1
/
/buy tag2
[Cookie: test]
/buy/?rt=0&station_to=7&station_from=9





File consist of list of URIs and headers to be added to every request defined below.
Every URI must begin from a new line, with leading /.
Each line that begins from [ is considered as a header.
Headers could be (re)defined in the middle of URIs, as in sample above.


	Example:

	Request /buy/?rt=0&station_to=7&station_from=9 will be sent with Cookie: test, not Cookie: None.





Request may be marked by tag, you can specify it with whitespace following URI.




URI+POST-style

YAML-file configuration: ammo_type: uripost

Create a file with declared requests: ammo.txt

[Host: example.org]
[Connection: close]
[User-Agent: Tank]
5 /route/?rll=50.262025%2C53.276083~50.056015%2C53.495561&origin=1&simplify=1
class
10 /route/?rll=50.262025%2C53.276083~50.056015%2C53.495561&origin=1&simplify=1
hello!clas
7 /route/?rll=37.565147%2C55.695758~37.412796%2C55.691454&origin=1&simplify=1
uripost





File begins with optional lines […], that contain headers which will
be added to every request. After that section there is a list of URIs and POST bodies.
Each URI line begins with a number which is the size of the following POST body.




Request-style

YAML-file configuration: ammo_type: phantom

Full requests listed in a separate file. For more complex
requests, like POST, you’ll have to create a special file. File format
is:

[size_of_request] [tag]\n
[request_headers]
[body_of_request]\r\n
[size_of_request2] [tag2]\n
[request2_headers]
[body_of_request2]\r\n





where size_of_request – request size in bytes. ‘rn’ symbols after
body are ignored and not sent anywhere, but it is required to
include them in a file after each request. Pay attention to the sample above
because ‘r’ symbols are strictly required.


Note

Parameter ammo_type is unnecessary, request-style is default ammo type.





sample GET requests (null body)

73 good
GET / HTTP/1.0
Host: xxx.tanks.example.com
User-Agent: xxx (shell 1)

77 bad
GET /abra HTTP/1.0
Host: xxx.tanks.example.com
User-Agent: xxx (shell 1)

78 unknown
GET /ab ra HTTP/1.0
Host: xxx.tanks.example.com
User-Agent: xxx (shell 1)







sample POST requests (binary data)

904
POST /upload/2 HTTP/1.0
Content-Length: 801
Host: xxxxxxxxx.dev.example.com
User-Agent: xxx (shell 1)

^.^........W.j^1^.^.^.²..^^.i.^B.P..-!(.l/Y..V^.      ...L?...S'NR.^^vm...3Gg@s...d'.\^.5N.$NF^,.Z^.aTE^.
._.[..k#L^ƨ`\RE.J.<.!,.q5.F^՚iΔĬq..^6..P..тH.`..i2
.".uuzs^^F2...Rh.&.U.^^..J.P@.A......x..lǝy^?.u.p{4..g...m.,..R^.^.^......].^^.^J...p.ifTF0<.s.9V.o5<..%!6ļS.ƐǢ..㱋....C^&.....^.^y...v]^YT.1.#K.ibc...^.26...   ..7.
b.$...j6.٨f...W.R7.^1.3....K`%.&^..d..{{      l0..^\..^X.g.^.r.(!.^^...4.1.$\ .%.8$(.n&..^^q.,.Q..^.D^.].^.R9.kE.^.$^.I..<..B^..^.h^^C.^E.|....3o^.@..Z.^.s.$[v.
527
POST /upload/3 HTTP/1.0
Content-Length: 424
Host: xxxxxxxxx.dev.example.com
User-Agent: xxx (shell 1)

^.^........QMO.0^.++^zJw.ر^$^.^Ѣ.^V.J....vM.8r&.T+...{@pk%~C.G../z顲^.7....l...-.^W"cR..... .&^?u.U^^.^.....{^.^..8.^.^.I.EĂ.p...'^.3.Tq..@R8....RAiBU..1.Bd*".7+.
.Ol.j=^.3..n....wp..,Wg.y^.T..~^..







sample POST multipart:

533
POST /updateShopStatus? HTTP/1.0
User-Agent: xxx/1.2.3
Host: xxxxxxxxx.dev.example.com
Keep-Alive: 300
Content-Type: multipart/form-data; boundary=AGHTUNG
Content-Length:334
Connection: Close

--AGHTUNG
Content-Disposition: form-data; name="host"

load-test-shop-updatestatus.ru
--AGHTUNG
Content-Disposition: form-data; name="user_id"

1
--AGHTUNG
Content-Disposition: form-data; name="wsw-fields"

<wsw-fields><wsw-field name="moderate-code"><wsw-value>disable</wsw-value></wsw-field></wsw-fields>
--AGHTUNG--





sample ammo generators you may find on the Ammo generators page.






Run Test!


	Request specs in load.yaml – run as yandex-tank -c load.yaml


	Request specs in ammo.txt – run as yandex-tank -c load.yaml ammo.txt




Yandex.Tank detects requests format and generates ultimate requests
versions.

yandex-tank here is an executable file name of Yandex.Tank.

If Yandex.Tank has been installed properly and configuration file is
correct, the load will be given in next few seconds.




Results

During test execution you’ll see HTTP and net errors, answer times
distribution, progressbar and other interesting data. At the same time
file phout.txt is being written, which could be analyzed later.

If you need more human-readable report, you can try Report plugin,
You can found it here [https://github.com/yandex-load/yatank-online]

If you need to upload results to external storage, such as Graphite or InfluxDB, you can use one of existing artifacts uploading modules Modules




Tags

Requests could be grouped and marked by some tag.

Example:

73 good
GET / HTTP/1.0
Host: xxx.tanks.example.com
User-Agent: xxx (shell 1)

77 bad
GET /abra HTTP/1.0
Host: xxx.tanks.example.com
User-Agent: xxx (shell 1)

75 unknown
GET /ab HTTP/1.0
Host: xxx.tanks.example.com
User-Agent: xxx (shell 1)





good, bad and unknown here are the tags.


Note

RESTRICTION: utf-8 symbols only






SSL

To activate SSL add phantom: {ssl: true} to load.yaml.
Now, our basic config looks like that:

phantom:
  address: 203.0.113.1:443
  load_profile:
    load_type: rps
    schedule: line(1, 10, 10m)
  ssl: true






Note

Do not forget to specify ssl port to address. Otherwise, you might get ‘protocol errors’.






Autostop

Autostop is an ability to automatically halt test execution
if some conditions are reached.


HTTP and Net codes conditions

There is an option to define specific codes (404,503,100) as well as code
groups (3xx, 5xx, xx). Also you can define relative threshold (percent
from the whole amount of answer per second) or absolute (amount of
answers with specified code per second).

Examples:


autostop: http(4xx,25%,10) – stop test, if amount of 4xx http codes in every second of last 10s period exceeds 25% of answers (relative threshold).

autostop: net(101,25,10) – stop test, if amount of 101 net-codes in every second of last 10s period is more than 25 (absolute threshold).

autostop: net(xx,25,10) – stop test, if amount of non-zero net-codes in every second of last 10s period is more than 25 (absolute threshold).







Average time conditions


	Example:

	autostop: time(1500,15) – stops test, if average answer time exceeds 1500ms.





So, if we want to stop test when all answers in 1 second period are 5xx plus some network and timing factors - add autostop line to load.yaml:

phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: rps
    schedule: line(1, 10, 10m)
autostop:
  autostop: |
    time(1s,10s)
    http(5xx,100%,1s)
    net(xx,1,30)










Logging

Looking into target’s answers is quite useful in debugging. For doing
that add phantom: {writelog: true} to load.yaml.


Note

Writing answers on high load leads to intensive disk i/o
usage and can affect test accuracy.**



Log format:

<metrics>
<body_request>
<body_answer>





Where metrics are:

size_in size_out response_time(interval_real) interval_event net_code
(request size, answer size, response time, time to wait for response
from the server, answer network code)

Example:

user@tank:~$ head answ_*.txt
553 572 8056 8043 0
GET /create-issue HTTP/1.1
Host: target.yandex.net
User-Agent: tank
Accept: */*
Connection: close


HTTP/1.1 200 OK
Content-Type: application/javascript;charset=UTF-8





For load.yaml like this:

phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: rps
    schedule: line(1, 10, 10m)
    writelog: true
autostop:
  autostop: |
    time(1,10)
    http(5xx,100%,1s)
    net(xx,1,30)








Results in phout

phout.txt - is a per-request log. It could be used for service behaviour
analysis (Excel/gnuplot/etc) It has following fields:
time, tag, interval_real, connect_time, send_time, latency, receive_time, interval_event, size_out, size_in, net_code proto_code

Phout example:

1326453006.582          1510    934     52      384     140     1249    37      478     0       404
1326453006.582   others       1301    674     58      499     70      1116    37      478     0       404
1326453006.587   heavy       377     76      33      178     90      180     37      478     0       404
1326453006.587          294     47      27      146     74      147     37      478     0       404
1326453006.588          345     75      29      166     75      169     37      478     0       404
1326453006.590          276     72      28      119     57      121     53      476     0       404
1326453006.593          255     62      27      131     35      134     37      478     0       404
1326453006.594          304     50      30      147     77      149     37      478     0       404
1326453006.596          317     53      33      158     73      161     37      478     0       404
1326453006.598          257     58      32      106     61      110     37      478     0       404
1326453006.602          315     59      27      160     69      161     37      478     0       404
1326453006.603          256     59      33      107     57      110     53      476     0       404
1326453006.605          241     53      26      130     32      131     37      478     0       404






Note

contents of phout depends on phantom version installed on your Yandex.Tank system.






Graph and statistics

Use Report plugin [https://github.com/yandex-load/yatank-online]
OR
use your favorite stats packet, R, for example.




Precise timings

You can set precise timings in load.yaml with verbose_histogram
parameter like this:

phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: rps
    schedule: line(1, 10, 10m)
aggregator:
  verbose_histogram: true






Note

Please keep an eye, last value of time_periods is no longer used as response timeout
Use phantom.timeout option.






Thread limit

instances: N in load.yaml limits number of simultanious
connections (threads).

Example with 10 threads limit:

phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: rps
    schedule: line(1, 10, 10m)
  instances: 10








Dynamic thread limit

You can specify load_type: instances instead of ‘rps’ to schedule a number of active instances
which generate as much rps as they manage to.
Bear in mind that active instances number cannot be decreased
and final number of them must be equal to instances parameter value.

Example:

phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: instances
    schedule: line(1,10,10m)
  loop=10000 # don't stop when the end of ammo is reached but loop it 10000 times






Note

Load scheme is excluded from this load.yaml as we used instances_schedule parameter.




Note

When using load_type: instances you should specify how many loops of
ammo you want to generate because tank can’t find out from the schedule
how many ammo do you need






Custom stateless protocol

In necessity of testing stateless HTTP-like protocol, Yandex.Tank’s HTTP
parser could be switched off, providing ability to generate load with
any data, receiving any answer in return. To do that add
tank_type: '2' to load.yaml.


Note

Indispensable condition: Connection close must be initiated by remote side



phantom:
  address: 203.0.113.1:80
  load_profile:
    load_type: rps
    schedule: line(1, 10, 10m)
  instances=: 10
  tank_type: 2








Gatling

If server with Yandex.Tank have several IPs, they may be
used to avoid outcome port shortage. Use gatling_ip parameter for
that. load.yaml:

phantom:
   address: 203.0.113.1:80
   load_profile:
     load_type: rps
     schedule: line(1, 10, 10m)
   instances: 10
   gatling_ip: IP1 IP2











          

      

      

    

  

    
      
          
            
  
Advanced usage


Command line options

Yandex.Tank has an obviously named executable yandex-tank.
Here are available command line options:


	-h, –help

	show command line options



	-c CONFIG, –config=CONFIG

	Read options from INI file.
It is possible to set multiple INI files by specifying the option serveral times.

Default: ./load.ini



	-i, –ignore-lock

	Ignore lock files.



	-f, –fail-lock

	Don’t wait for lock file, quit if it’s busy.

Default behaviour is to wait for lock file to become free



	-l LOG, –log=LOG

	Main log file location.

Default: ./tank.log



	-m, –manual-start

	Tank will prepare for test and wait for Enter key to start the test.



	-n, –no-rc

	Don’t read /etc/yandex-tank/*.ini and ~/.yandex-tank



	-o OPTION, –option=OPTION

	Set an option from command line.
Options set in cmd line override those have been set in configuration files. Multiple times for multiple options.

Format: <section>.<option>=value

Example: yandex-tank -o "console.short_only=1" --option="phantom.force_stepping=1"



	-s SCHEDULED_START, –scheduled-start=SCHEDULED_START

	Run test on specified time, date format YYYY-MM-DD hh:mm:ss or hh:mm:ss



	-q, –quiet

	Only print WARNINGs and ERRORs to console.



	-v, –verbose

	Print ALL, including DEBUG, messages to console. Chatty mode.





Add an ammo file name as a nameless parameter, e.g.:
yandex-tank ammo.txt or yandex-tank ammo.gz




Advanced configuration

Configuration files organized as standard INI files. Those are files
partitioned into named sections that contain ‘name=value’ records.

Example:

[phantom]
address=example.com:80
rps_schedule=const(100,60s)

[autostop]
autostop=instances(80%,10)






Note

A common rule: options with the
same name override those set before them (in the same file or not).




Default configuration files

If no --no-rc option passed, Yandex.Tank reads all *.ini from
/etc/yandex-tank directory, then a personal config file ~/.yandex-tank.
So you can easily put your favourite settings in ~/.yandex-tank

Example: tank.artifacts_base_dir, phantom.cache_dir, console.info_panel_width




The DEFAULT section

One can use a magic DEFAULT section, that contains global
options. Those options are in charge for every section:

[autostop]
autostop=time(1,10)

[console]
short_only=1

[meta]
job_name=ask





is an equivalent for:

[DEFAULT]
autostop=time(1,10)
short_only=1
job_name=ask






Note

Don’t use global options wich have same name in different sections.






Multiline options

Use indent to show that a line is a continuation of a previous one:

[autostop]
autostop=time(1,10)
  http(404,1%,5s)
  net(xx,1,30)






Note

Ask Yandex.Tank developers to add multiline capability for options
where you need it!*






Referencing one option to another

%(optname)s gives you ability to reference from option to another. It helps to reduce duplication.

Example:

[DEFAULT]
host=target12.load.net

[phantom]
address=%(host)s
port=8080

[monitoring]
default_target=%(host)s

[shellexec]
prepare=echo Target is %(host)s








Time units

Default : milliseconds.

Example:

``30000 == 30s``
``time(30000,120)`` is an equivalent to ``time(30s,2m)``





Time units encoding is as following:







	Abbreviation

	Meaning





	ms

	millisecons



	s

	seconds



	m

	minutes



	h

	hours







Note

You can also  mix them: 1h30m15s or 2s15ms.






Shell-options

Option value with backquotes is evaluated in shell.

Example:

[meta]
job_name=`pwd`










Artifacts

As a result Yandex.Tank produces some files (logs, results, configs
etc). Those files are placed with care to the artifact directory. An
option for that is artifacts_base_dir in the tank section. It is
recommended to set it to a convenient place, for example,
~/yandex-tank-artifacts; it would be easier to manage the artifacts
there.




Sources

Yandex.Tank sources are here [https://github.com/yandex-load/yandex-tank].




load.ini example

;Yandex.Tank config file
[phantom]
;Target's address and port
address=fe80::200:f8ff:fe21:67cf
port=8080
instances=1000
;Load scheme
rps_schedule=const(1,30) line(1,1000,2m) const(1000,5m)
;  Headers and URIs for GET requests
header_http = 1.1
uris=/
    /test
    /test2
headers=[Host: www.ya.ru]
        [Connection: close]
[autostop] autostop = http(5xx,10%,5s)











          

      

      

    

  

    
      
          
            
  
Modules


TankCore

Core class. Represents basic steps of test execution. Simplifies plugin configuration,
configs reading, artifacts storing. Represents parent class for modules/plugins.

INI file section: [tank]


Architecture

[image: _images/tank-architecture.png]



Test lifecycle

[image: _images/tank-lifecycle.png]



Options

Basic options:


	lock_dir

	Directory for lockfile.

Default: /var/lock/.



	plugin_<pluginname>

	Path to plugin. Empty path interpreted as disable of plugin.



	artifacts_base_dir

	Base directory for artifacts storing. Temporary artifacts files are stored here.

Default: current directory.



	artifacts_dir

	Directory where to keep artifacts after test.

Default: directory in artifacts_base_dir named in  Date/Time format.



	flush_config_to

	Dump configuration options after each tank step (yandex.tank steps. sorry, russian only [http://clubs.ya.ru/yandex-tank/replies.xml?item_no=6]) to that file



	taskset_path

	Path to taskset command.

Default: taskset.



	affinity

	Set a yandex-tank’s (python process and load generator process) CPU affinity.

Default: empty.

Example: 0-3 enabling first 4 cores, ‘0,1,2,16,17,18’ enabling 6 cores.








consoleworker

Consoleworker is a cmd-line interface for Yandex.Tank.

Worker class that runs and configures TankCore accepting cmdline parameters.
Human-friendly unix-way interface for yandex-tank.
Command-line options described above.




apiworker


apiworker is a python interface for Yandex.Tank.




Worker class for python. Runs and configures TankCore accepting dict().
Python-frinedly interface for yandex-tank.

Example:

from yandextank.api.apiworker import ApiWorker
import logging
import traceback
import sys

logger = logging.getLogger('')
logger.setLevel(logging.DEBUG)

#not mandatory options below:
options = dict()
options['config'] = '/path/to/config/load.ini'
options['manual_start'] = "1"
options['user_options'] = [
    'phantom.ammofile=/path/to/ammofile',
    'phantom.rps_schedule=const(1,2m)',
]
log_filename = '/path/to/log/tank.log'
#======================================

apiworker = ApiWorker()
apiworker.init_logging(log_filename)
try:
    apiworker.configure(options)
    apiworker.perform_test()
except Exception, ex:
    logger.error('Error trying to perform a test: %s', ex)








exit codes

{
    "0": "completed",
    "1": "interrupted_generic_interrupt",
    "2": "interrupted",
    "3": "interrupted_active_task_not_found ",
    "4": "interrupted_no_ammo_file",
    "5": "interrupted_address_not_specified",
    "6": "interrupted_cpu_or_disk_overload",
    "7": "interrupted_unknown_config_parameter",
    "8": "interrupted_stop_via_web",
    "9": "interrupted",
    "11": "interrupted_job_number_error",
    "12": "interrupted_phantom_error",
    "13": "interrupted_job_metainfo_error",
    "14": "interrupted_target_monitoring_error",
    "15": "interrupted_target_info_error",
    "21": "autostop_time",
    "22": "autostop_http",
    "23": "autostop_net",
    "24": "autostop_instances",
    "25": "autostop_total_time",
    "26": "autostop_total_http",
    "27": "autostop_total_net",
    "28": "autostop_negative_http",
    "29": "autostop_negative_net",
    "30": "autostop_http_trend",
    "31": "autostop_metric_higher",
    "32": "autostop_metric_lower"
}










Load Generators


Phantom

Load generator module that uses phantom utility.

INI file section: [phantom]


How it works

[image: _images/tank-stepper.png]



Options


Basic options


	ammofile

	Ammo file path (ammo file is a file containing requests that are to be sent to a server. Could be gzipped).



	rps_schedule

	Load schedule in terms of RPS.



	instances

	Max number of instances (concurrent requests).



	instances_schedule

	Load schedule in terms of number of instances.



	loop

	Number of times requests from ammo file are repeated in loop.



	ammo_limit

	Limit request number.



	autocases

	Enable marking requests automatically. autocases = 2 means 2 uri path elements will be used. I.e /hello/world/please/help will produce case _hello_world



	chosen_cases

	Use only selected cases.





There are 3 ways to constrain requests number: by schedule with rps_schedule, by requests number with ammo_limit or by loop number with loop option. Tank stops if any constraint is reached. If stop reason is reached ammo_limit or loop it will be mentioned in log file. In test without rps_schedule file with requests is used one time by default.




Additional options


	writelog

	Enable verbose request/response logging.

Default: 0.

Available options: 0 - disable, all - all messages, proto_warning - 4хх+5хх+network errors, proto_error - 5хх+network errors.



	ssl

	Enable SSL.

Default: 0.

Available options: 1 - enable, 0 - disable.



	timeout

	Response timeout.

Default: 11s.






Note

Default multiplier is seconds. If you specify 10, timeout will be 10 seconds.
Currently we support here multipliers: ‘d’ for days, ‘h’ for hours, ‘m’ for minutes, ‘s’ for seconds
Examples:
0.1s is 100 milliseconds.
1m for 1 minute.




	address

	Address of target.

Default: 127.0.0.1.

Format: [host]:port, [ipv4]:port, [ipv6]:port. Tank checks each test if port is available.



	port (deprecated, use address)

	Port of target.

Default: 80.



	gatling_ip

	Use multiple source addresses. List, divided by spaces.



	tank_type

	Available options: http and none (raw TCP).

Default: http.



	eta_file

	Path to ETA file.



	connection_test

	Test TCP socket connection before starting the test.

Default: 1.

Available options: 1 - enable, 0 - disable.








URI-style options


	uris

	URI list, multiline option.



	headers

	HTTP headers list in the following form: [Header: value], multiline option.



	header_http

	HTTP version.

Default: 1.0

Available options: 1.0 and 1.1. 2.0 is NOT supported by this load generator.








stpd-file cache options


	use_caching

	Enable cache.

Default: 1.



	cache_dir

	Cache files directory.

Default: base artifacts directory.



	force_stepping

	Force stpd file generation.

Default: 0.








Advanced options


	phantom_path

	Phantom utility path.

Default: phantom.



	phantom_modules_path

	Phantom modules path.

Default: /usr/lib/phantom.



	config

	Use given (in this option) config file for phantom instead of generated.



	phout_file

	Import this phout instead of launching phantom (import phantom results).



	stpd_file

	Use this stpd-file instead of generated.



	threads

	Phantom thread count.

Default: <processor cores count>/2 + 1.



	buffered_seconds

	Amount of seconds to which delay aggregator, to be sure that everything were read from phout.



	additional_libs

	List separated by whitespaces, will be added to phantom config file in section module_setup



	method_prefix

	Object’s type, that has a functionality to create test requests.

Default: method_stream.



	source_log_prefix

	Prefix, added to class name that reads source data.

Default: empty.



	method_options

	Additional options for method objects. It is used for Elliptics etc.

Default: empty.



	affinity

	Set a phantom’s CPU affinity.

Example: 0-3 enabling first 4 cores, ‘0,1,2,16,17,18’ enabling 6 cores.

Default: empty.








TLS/SSL additional options


Note

ssl=1 is required




	client_cipher_suites

	Cipher list, consists of one or more cipher strings separated by colons (see man ciphers).

Example: client_cipher_suites = RSA:!COMPLEMENTOFALL

Default: empty.



	client_certificate

	Path to client certificate which is used in client’s “Certificate message” in Client-authenticated TLS handshake.

Default: empty.



	client_key

	Path to client’s certificate’s private key, used for client’s “CertificateVerify message” generation in Client-authenticated TLS handshake.

Default: empty.








Phantom http-module tuning options


	phantom_http_line

	First line length.

Default: 1K.



	phantom_http_field_num

	Headers amount.

Default: 128.



	phantom_http_field

	Header size.

Default: 8K.



	phantom_http_entity

	Answer size.

Default: 8M.






Note

Please, keep in mind, especially if your service has large answers, that phantom doesn’t read more than defined in phantom_http_entity.








Artifacts


	phantom_*.conf

	Generated configuration files.



	phout_*.log

	Raw results file.



	phantom_stat_*.log

	Phantom statistics, aggregated by seconds.



	answ_*.log

	Detailed request/response log.



	phantom_*.log

	Internal phantom log.








Multi-tests

To make several simultaneous tests with phantom, add proper amount of sections with names phantom-_N_. All subtests are executed in parallel. Multi-test ends as soon as one subtest stops.

Example:

[phantom]
phantom_path=phantom
ammofile=data/dummy.ammo
instances=10
instances_schedule=line(1,10,1m)
loop=1
use_caching=1

[phantom-1]
uris=/
        /test
        /test2
headers=[Host: www.ya.ru]
        [Connection: close]
rps_schedule=const(1,30) line(1,1000,2m) const(1000,5m)
address=fe80::200:f8ff:fe21:67cf
port=8080
ssl=1
timeout=15
instances=3
gatling_ip=127.0.0.1 127.0.0.2
phantom_http_line=123M

[phantom-2]
uris=/3
rps_schedule=const(1,30) line(1,50,2m) const(50,5m)





Options that apply only for main section: buffered_seconds, writelog, phantom_modules_path, phout_file, config, eta_file, phantom_path






JMeter

JMeter module uses JMeter as a load generator. To enable it, disable phantom first (unless you really want to keep it active alongside at your own risk), enable JMeter plugin and then specify the parameters for JMeter:

[tank]
; Disable phantom:
plugin_phantom=
; Enable JMeter instead:
plugin_jmeter=yandextank.plugins.JMeter





INI file section: [jmeter]


Options


	jmx

	Testplan for execution.



	args

	Additional commandline arguments for JMeter.



	jmeter_path

	Path to JMeter, allows to use alternative JMeter installation.

Default: jmeter



	buffered_seconds

	Amount of seconds to which delay aggregator, to be sure that everything were read from jmeter’s results file.



	jmeter_ver

	Which jmeter version tank should expect. Currently it affects the way connection time is logged, but may be used for other version-specific settings.

Default: 3.0



	ext_log

	Available options: none, errors, all. Add one more simple data writer which logs all possible fields in jmeter xml format, this log is saved in test dir as jmeter_ext_XXXX.jtl.

Default: none



	all other options in the section

	They will be passed as User Defined Variables to JMeter.








Timing calculation issues

Since version 2.13 jmeter could measure connection time, latency and full request time (aka <interval_real> in phantom), but do it in it’s own uniq way: latency include connection time but not recieve time. For the sake of consistency we recalculate <latency> as <latency - connect_time> and calculate <recieve_time> as <interval_real - latency - connect_time>>, but it does not guranteed to work perfectly in all cases (i.e. some samplers may not support latency and connect_time and you may get something strange in case of timeouts).

For jmeter 2.12 and older connection time logging not avaliable, set jmeter_ver properly or you’ll get an error for unknown field in Simlpe Data Writer listner added by tank.




Artifacts


	<original jmx>

	Original testplan.



	<modified jmx>

	Modified test plan with results output section.



	<jmeter_*.jtl>

	JMeter’s results.



	<jmeter_*.log>

	JMeter’s log.










BFG

(What is BFG [http://en.wikipedia.org/wiki/BFG_(weapon)])
BFG is a generic gun that is able to use different kinds of cannons to shoot. To enable it, disable phantom first (unless you really want to keep it active alongside at your own risk), enable BFG plugin and then specify the parameters for BFG and for the gun of your choice.

There are three predefined guns: Log Gun, Http Gun and SQL gun. First two are mostly for demo, if you want to implement your own gun class, use them as an example.

But the main purpose of BFG is to support user-defined scenarios in python. Here is how you do it using ‘ultimate’ gun.


	Define your scenario as a python class (in a single-file module, or a package):




import logging
log = logging.getLogger(__name__)


class LoadTest(object):
    def __init__(self, gun):

        # you'll be able to call gun's methods using this field:
        self.gun = gun

        # for example, you can get something from the 'ultimate' section of a config file:
        my_var = self.gun.get_option("my_var", "hello")

    def case1(self, missile):
        # we use gun's measuring context to measure time.
        # The results will be aggregated automatically:
        with self.gun.measure("case1"):
            log.info("Shoot case 1: %s", missile)

        # there could be multiple steps in one scenario:
        with self.gun.measure("case1_step2") as sample:
            log.info("Shoot case 1, step 2: %s", missile)
            # and we can set the fields of measured object manually:
            sample["proto_code"] = 500

            # the list of available fields is below

    def case2(self, missile):
        with self.gun.measure("case2"):
            log.info("Shoot case 2: %s", missile)

    def setup(self, param):
        ''' this will be executed in each worker before the test starts '''
        log.info("Setting up LoadTest: %s", param)

    def teardown(self):
        ''' this will be executed in each worker after the end of the test '''
        log.info("Tearing down LoadTest")
        #It's mandatory to explicitly stop worker process in teardown
        os._exit(0)
        return 0






	Define your options in a config file:




[tank]
; Disable phantom:
plugin_phantom=
; Enable BFG instead:
plugin_bfg=yandextank.plugins.Bfg

[bfg]
; parallel processes count
instances = 10
; gun type
gun_type = ultimate

; ammo file
ammofile=req_json.log

; load schedule
rps_schedule=line(1,100,10m)

[ultimate_gun]
; path to your custom module
module_path = ./my_own_service
; python module name
module_name = mygun
; gun initialization parameter
init_param = Hello





3. Create an ammo file:
Ammo format: one line – one request, each line begins with case name separated by tab symbol (‘t’).
Case name defines the method of your test class that will be executed. The line itself will
be passed to your method as ‘missile’ parameter. If there was no case name for an ammo, the ‘default’ case name will be used

case1<TAB>my-case1-ammo
case2<TAB>my-case2-ammo
my-default-case-ammo






Note

TIP: if each line is a JSON-encoded document, you can easily parse it
inside your scenario code




	Shoot em all!





How it works

[image: _images/tank-bfg.png]



BFG Worker Type

By default, BFG will create lots of processes (number is defined by instances option).
Every process will execute requests in a single thread. These processes will comsume a lot of memory.
It’s also possible to switch this behavior and use gevent to power up every worker process,
allowing it to have multiple concurrent threads executing HTTP requests.

With green worker, it’s recommended to set instances to number of CPU cores,
and adjust the number of real threads by green_threads_per_instance option.

INI file section: [bfg]


	worker_type

	Set it to green to let every process have multiple concurrent green threads.



	green_threads_per_instance

	Number of green threads every worker process will execute. Only affects green worker type.








BFG Options

INI file section: [bfg]


	gun_type

	What kind of gun should BFG use.



	ammo_type

	What ammo parser should BFG use.

Default: caseline.



	pip

	Install python modules with pip install --user before the test. If you need multiple modules use multiline options, i.e.:





pip=grequests
  msgpack






	init_param

	An initialization parameter that will be passed to your setup method.



	other common stepper options

	







Ultimate Gun Options

gun_type = ultimate

INI file section: [ultimate_gun]


	module_path

	Path to your module



	module_name

	Python module name



	class_name

	Class that contains load scenarios, default: LoadTest





The fields of measuring context object and their default values:


	send_ts

	A timestamp when context was entered.



	tag

	A marker passed to the context.



	interval_real

	The time interval from enter to exit. If the user defines his own value, it will be preserved. Microseconds.



	connect_time

	Microseconds. Default: 0



	send_time

	Microseconds. Default: 0



	latency

	Microseconds. Default: 0



	receive_time

	Microseconds. Default: 0



	interval_event

	Microseconds. Default: 0



	size_out

	Bytes out. Integer. Default: 0



	size_in

	Bytes in. Integer. Default: 0



	net_code

	Network code. Integer. Default: 0



	proto_code

	Protocol code (http, for example). Integer. Default: 200








SQL Gun Options

gun_type = sql

INI file section: [sql_gun]


	db

	DB uri in format:  dialect+driver://user:password@host/dbname[?key=value..], where dialect is a database name such as mysql, oracle, postgresql, etc., and driver the name of a DBAPI, such as psycopg2, pyodbc, cx_oracle, etc. details [http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html#database-urls]










Pandora

Pandora [https://github.com/yandex/pandora] is a load generator written in Go. For now it supports only SPDY/3 and HTTP(S). Plugins for other protocols
(HTTP/2, Websocket, XMPP) are on the way.

First of all you’ll need to obtain a binary of pandora and place it somewhere on your machine.
By default, Yandex.Tank will try to just run pandora (or you could specify a path to binary in pandora_cmd).
Disable phantom first (unless you really want to keep it active alongside at your own risk), enable Pandora plugin and then specify the parameters.

[tank]
; Disable phantom:
plugin_phantom=
; Enable Pandora instead:
plugin_pandora=yandextank.plugins.Pandora

; Pandora config section:
[pandora]

; Pandora executable path
pandora_cmd=/usr/bin/pandora

; Enable/disable expvar monitoring
expvar = 1 ; default

; Pandora config contents (json)
config_content = {
  "pools": [
  {
    "name": "dummy pool",
    "gun": {"type": "log"},
    "ammo": {
      "type": "dummy/log",
      "AmmoLimit": 10000000
    },
    "result": {
      "type": "phout",
      "destination": "./phout.log"
    },
    "shared-limits": false,
    "user-limiter": {
      "type": "unlimited"
    },
    "startup-limiter": {
      "type": "periodic",
      "batch": 1,
      "max": 5,
      "period": "0.5s"
    }
  }]}

; OR config file (yaml or json)
config_file = pandora_config.yml






Schedules

The first schedule type is periodic schedule. It is defined as periodic(<batch_size>, <period>, <limit>).
Pandora will issue one batch of size batch_size, once in period seconds, maximum of limit ticks. Those ticks may be
used in different places, for example as a limiter for user startups or as a limiter for each user request rate.

Example:

startup_schedule = periodic(2, 0.1, 100)
user_schedule = periodic(10, 15, 100)
shared_schedule = 0





Start 2 users every 0.1 seconds, 100 batches, maximum of 2 * 100 = 200 users. Each user will issue requests in batches of 10 requests, every 15 seconds, maximum
of 100 requests. All users will read from one ammo source.

Second schedule type is linear. It is defined like this: linear(<start_rps>, <end_rps>, <time>).

Example:

user_schedule = linear(.1, 10, 10m)
shared_schedule = 1





The load will raise from .1 RPS (1 request in 10 seconds) until 10 RPS during 10 minutes. Since
shared_schedule is 1, this defines the overall load.

The last schedule type is unlimited. It has no parameters and users will shoot as soon
as possible. It is convenient to use this type of load to find out maximum performance of a
service and its level of parallelism. You should limit the loop number if you want the test
to stop eventually.

Example:

loop = 1000000
startup_schedule = periodic(2, 10, 50)
user_schedule = unlimited()
shared_schedule = 0





Start 2 users every 10 seconds. Every user will shoot without any limits (next request is sended
as soon as the previous response have been received). This is analogous to phantom’s instances
schedule mode.








Artifact uploaders


Note

Graphite uploader, InfluxDB uploader and BlazeMeter Sense are not currently supported in the last Yandex.Tank version.
If you want one of them, use 1.7 branch.




Yandex.Overload

Overload 𝛃 is a service for performance analytics made by Yandex. We will store your performance experiments results and show them in graphic and tabular form. Your data will be available at https://overload.yandex.net.

[image: _images/overload-screen.png]
INI file section: [overload]


Options


	token_file

	Place your token obtained from Overload (click your profile photo) into a file and specify the path here



	job_name

	(Optional) Name of a job to be displayed in Yandex.Overload



	job_dsc

	(Optional) Description of a job to be displayed in Yandex.Overload





Example:

[tank]
; plugin is disabled by default, enable it:
plugin_uploader=yandextank.plugins.DataUploader overload

[overload]
token_file=token.txt
job_name=test
job_dsc=test description












Handy tools


Auto-stop

The Auto-stop module gets the data from the aggregator and passes them
to the criteria-objects that decide if we should stop the test.

INI file section: [autostop]


Options


	autostop

	Criteria list divided by spaces, in following format: type(parameters)






Basic criteria types


	time

	Stop the test if average response time is higher then allowed.

Example: time(1s500ms, 30s) time(50,15).

Exit code - 21



	http

	Stop the test if the count of responses in time period (specified) with HTTP codes fitting the mask is larger then the specified absolute or relative value.

Examples: http(404,10,15) http(5xx, 10%, 1m).
Exit code - 22



	net

	Like http, but for network codes. Use xx for all non-zero codes.

Exit code - 23



	quantile

	Stop the test if the specified percentile is larger then specified level for as long as the time period specified.

Available percentile values: 25, 50, 75, 80, 90, 95, 98, 99, 100.

Example: quantile (95,100ms,10s)



	instances

	Available when phantom module is included. Stop the test if instance count is larger then specified value.

Example: instances(80%, 30) instances(50,1m).

Exit code - 24



	metric_lower and metric_higher

	Stop test if monitored metrics are lower/higher than specified for time period.

Example: metric_lower(127.0.0.1,Memory_free,500,10).

Exit code - 31 and 32

Note: metric names (except customs) are written with underline. For hostnames masks are allowed (i.e target-*.load.net)



	steady_cumulative

	Stops the test if cumulative percentiles does not change for specified interval.

Example: steady_cumulative(1m).

Exit code - 33



	limit

	Will stop test after specified period of time.

Example: limit(1m).





Basic criteria aren’t aggregated, they are tested for each second in specified period. For example autostop=time(50,15) means “stop if average responce time for every second in 15s interval is higher than 50ms”




Advanced criteria types


	total_time

	Like time, but accumulate for all time period (responses that fit may not be one-after-another, but only lay into specified time period).

Example: total_time(300ms, 70%, 3s).

Exit code - 25



	total_http

	Like http, but accumulated. See total_time.

Example: total_http(5xx,10%,10s) total_http(3xx,40%,10s).

Exit code - 26



	total_net

	Like net, but accumulated. See total_time.

Example: total_net(79,10%,10s) total_net(11x,50%,15s)

Exit code - 27



	negative_http

	Inversed total_http. Stop if there are not enough responses that fit the specified mask. Use to be shure that server responds 200.

Example: negative_http(2xx,10%,10s).

Exit code - 28



	negative_net

	Inversed total_net. Stop if there are not enough responses that fit the specified mask.

Example: negative_net(0,10%,10s).

Exit code - 29



	http_trend

	Stop if trend for defined http codes is negative on defined period. Trend is a sum of an average coefficient for linear functions calculated for each pair points in last n seconds and standart deviation for it

Example: http_trend(2xx,10s).

Exit code - 30












Telegraf

Runs metrics collection through SSH connection. You can debug your SSH connection using yandex-tank-check-ssh tool.
It is supplied with Yandex.Tank.

Thanks to https://github.com/influxdata/telegraf for metric collection agent.

For using this plugin, replace old plugin plugin_monitoring=yandextank.plugins.Monitoring in .ini file with this:

[tank]
plugin_telegraf=yandextank.plugins.Telegraf





In https://github.com/yandex/yandex-tank/blob/master/yandextank/core/config/00-base.ini it is already done. Please, don’t use both plugin_monitoring=yandextank.plugins.Telegraf and plugin_monitoring=yandextank.plugins.Monitoring simultaneously.

INI file section: [telegraf]

You can use old monitoring config format, if you specify it in [monitoring] section. Telegraf plugin transparently supports it.
You can use new monitoring config format, if you specify it in [telegraf] section.

Backward compatibility logic:

[image: _images/monitoring_backward_compatibility_grapf.png]
Telegraf plugin automatically uploads telegraf collector binary to target from tank if exists.


Options


	config

	Path to monitoring config file.

Default: auto means collect default metrics from default_target host. If none is defined,
monitoring won’t be executed. Also it is possible to write plain multiline XML config.



	default_target

	An address where from collect “default” metrics. When phantom module is used, address will be obtained from it.



	ssh_timeout

	Ssh connection timeout.

Default: 5s



	disguise_hostnames

	Disguise real host names.

Default: 0








Configuration


Net access and authentication

Telegraf requires ssh access to hosts for copy and executing agents/telegraf collector binaries on them. SSH session is established with user account specified by “username” parameter of Host element, otherwise current user account, so you need to copy your public keys (ssh-copy-id) and enable nonpassword authorization on hosts.
If connection establishing failed for some reason in ssh_timeout seconds, corresponding message will be written to console and monitoring log and task will proceed further.
Tip: write to .ssh/config next lines to eliminate -A option in ssh

StrictHostKeyChecking no
ForwardAgent yes








Configuration file format

Config is an XML file with structure:
root element Monitoring includes elements Host which contains elements-metrics
Example:

<Monitoring>
    <Host address="somehost.tld" interval="1" username="netort">
        <CPU fielddrop='["time_*", "usage_guest_nice"]'></CPU>
        <Kernel fielddrop='["active", "inactive", "total", "used_per*", "avail*"]'></Kernel>
        <Net fielddrop='["icmp*", "ip*", "udplite*", "tcp*", "udp*", "drop*", "err*"]' interfaces='["eth0","eth1","lo"]'></Net>
        <System fielddrop='["n_users", "n_cpus", "uptime*"]'></System>
        <Memory fielddrop='["active", "inactive", "total", "used_per*", "avail*"]'></Memory>
        <Disk devices='["vda1","sda1","sda2","sda3"]'></Disk>
        <Netstat />
        <Custom diff="1" measure="call" label="test">curl -s -H 'Host: host.tld' 'http://localhost:6100/stat'  | python -c 'import sys, json; j = json.load(sys.stdin); print "\n".join(`c["values"]["accept"]` for c in j["charts"] if c["name"] == "localqueue_wait_time")'</Custom>
        <Source>/path/to/file</Source>
        <TelegrafRaw>
            [[inputs.ping]]
            urls = ["127.0.0.1"]
            count = 1
        </TelegrafRaw>
    </Host>

    <Host address="localhost" telegraf="/usr/bin/telegraf">
        <CPU percpu="true"></CPU>
        <NetResponse address="localhost:80" protocol="tcp" timeout="1s"></NetResponse>
        <Net fielddrop='["icmp*", "ip*", "udplite*", "tcp*", "udp*", "drop*", "err*"]' interfaces='["eth0","eth1","docker0","lo"]'></Net>
    </Host>
</Monitoring>








Element Host

Contains address and role of monitored server. Attributes:


	address=”<IP address or domain name>

	Server adddress. Mandatory. Special mask [target] could be used here, which means “get from the tank target address”



	port=”<SSH port>”

	Server’s ssh port. Optional.

Default: 22



	python=”<python path>”

	The way to use alternative python version. Optional.



	interval=”<seconds>”

	Metrics collection interval. Optional.

Default: 1 second



	comment=”<short commentary>”

	Short notice about server’s role in test. Optional.

Default: empty



	username=”<user name>”

	User account to connect with. Optional.

Default: current user account.



	telegraf=”/path/to/telegraf”

	Path to telegraf binary on remote host. Optional.

Default: /usr/bin/telegraf





Example:
<Host address="localhost" comment="frontend" interval="5" username="tank"/>




Metric elements

Metric elements in general are set by metrics group name.

There are plenty of config-wide configuration options (such as ‘fielddrop’, ‘fieldpass’ etc, you can read about them here: https://github.com/influxdata/telegraf/blob/master/docs/CONFIGURATION.md

List of metrics group names and particular metrics in them:


	
	CPU

	
	percpu - default: false










	System


	Memory


	
	Disk

	
	devices - default: “,”.join([‘“vda%s”,”sda%s”’ % (num, num) for num in range(6)]). Format sample: [“sda1”, “docker0”]










	
	Net

	
	interfaces - default: “,”.join([‘“eth%s”’ % (num) for num in range(6)]). Format sample: [“eth0”,”eth1”]










	Netstat


	Kernel


	KernelVmstat


	
	NetResponse

	
	protocol - default: “tcp”. Protocol, must be “tcp” or “udp”


	address - default: “:80”. Server address and port


	timeout - default: “1s”. Set timeout


	send - default: None. Optional string sent to the server


	expect - default: None. Optional expected string in answer










	
	Custom

	
	diff - default: 0


	measure - default: call - metric value is a command or script execution output. Example: <Custom measure=”call” diff=”1” label=”Base size”>du -s /var/lib/mysql/ | awk ‘{print $1}’</Custom>










	
	TelegrafRaw

	
	raw telegraf TOML format, transparently added to final collector config










	
	Source

	
	additional source file in telegraf json format, can be used to add custom metrics that needs complex processing and do not fit into standart custom metrics (like log parsing with aggregation). Custom metrics do not include timestamps but source does. You can import async data with Source.




Config Host section example:
<Source>/path/to/file</Source>

File format: jsonline. Each line is a json document.

Example:
{"fields":{"metric_name_1":0,"metric_name_2":98.27694231863998,},"name":"custom_group-name","timestamp":1503990965}
















Console on-line screen

Shows usefull information in console while running the test

INI file section: [console]


Options


	short_only

	Show only one-line summary instead of full-screen. Usefull for scripting.

Default: 0 (disabled)



	info_panel_width

	relative right-panel width in percents,

Default: 33



	disable_all_colors

	Switch off color scheme

Available options: 0/1

Default: 0



	disable_colors

	Don’t use specified colors in console. List with whitespaces. Example: WHITE GREEN RED CYAN MAGENTA YELLOW










Aggregator

The aggregator module is responsible for aggregation of data received
from different kind of modules and transmitting that aggregated data to
consumer modules (Console screen module is an example of such kind).

INI file section: [aggregator]


Options


	verbose_histogram

	Controls the accuracy of cumulative percentile.

Available options: 0/1.

Default: 0.










ShellExec

The ShellExec module executes the shell-scripts (hooks) on different
stages of test, for example, you could start/stop some services just
before/after the test. Every hook must return 0 as an exit code or the
test is terminated. Hook’s stdout will be written to DEBUG, stderr will
be WARNINGs.

Example: [shellexec] start=/bin/ls -l.


Note

Command quoting is not needed. That line doesn’t work: start="/bin/ls -l"



INI file section: [shellexec]


Options


	prepare

	The script to run on prepare stage.



	start

	The script to run on start stage.



	poll

	The script to run every second while the test is running.



	end

	The script to run on end stage.



	post_process

	The script to run on postprocess stage










Resource Check

Module checks free memory and disk space amount before and during test. Test stops if minimum values are reached.

INI file section: [rcheck]


Options


	interval

	How often to check resources.

Default interval: 10s



	disk_limit

	Minimum free disk space in MB.

Default: 2GB



	mem_limit

	Minimum free memory amount in MB.

Default: 512MB










RC Assert

Module checks test’s exit code with predefined acceptable codes. If exit code matches, it is overrides as 0. Otherwise it is replaced with code from option fail_code

INI file section: [rcassert]


Options


	pass

	list of acceptable codes, delimiter - whitespace.

Default: empty, no check is performed.



	fail_code

	Exit code when check fails, integer number.

Default: 10










Tips&Tricks

Shows tips and tricks in fullscreen console.

INI-file section: [tips]


Options


	disable

	Disable tips and tricks.

Default: 0 (don’t).










BatteryHistorian

Module collects android device battery historian log to artifacts.

INI-file section: [battery_historian]


Options


	device_id

	Android device id. Should be specified.

Default: None (will raise an exception).










SvgReport

Module generates svg file with various test results, e.g.,
monitoring plots, RPS during test etc.

INI-file section: [svgreport]


Options


	report_file

	Name of report file.

Default: report.svg












Deprecated


Monitoring

Runs metrics collection through ssh connect.

INI file section: [monitoring]


Options


	config

	Path to monitoring config file.

Default: auto means collect default metrics from default_target host. If none is defined, monitoring won’t be executed. Also it is possible to write plain multiline XML config.



	default_target

	An address where from collect “default” metrics. When phantom module is used, address will be obtained from it.



	ssh_timeout

	Ssh connection timeout.

Default: 5s








Artifacts


	agent_*.cfg

	Configuration files sent to hosts to run monitoring agents.



	agent_<host>_*.log

	Monitoring agents’ log files, downloaded from hosts.



	monitoring_*.data

	Data collected by monitoring agents, received by ssh.



	<monitoring config

	Monitoring config file.








Configuration


Net access and authentication

Monitoring requires ssh access to hosts for copy and executing agents on them. SSH session is established with user account specified by “username” parameter of Host element, otherwise current user account, so you need to copy your public keys (ssh-copy-id) and enable nonpassword authorization on hosts.
If connection establishing failed for some reason in ssh_timeout seconds, corresponding message will be written to console and monitoring log and task will proceed further.
Tip: write to .ssh/config next lines to eliminate -A option in ssh

StrictHostKeyChecking no
ForwardAgent yes








Configuration file format

Config is an XML file with structure:
root element Monitoring includes elements Host which contains elements-metrics
Example:

<Monitoring>
  <Host address="xxx.load.net">
    <CPU measure="user,system,iowait"/>
    <System measure="csw,int"/>
    <Memory measure="free,used"/>
    <Disk measure="read,write"/>
    <Net measure="recv,send"/>
  </Host>
</Monitoring>








Element Monitoring

Global monitoring settings.


	loglevel

	Logging level.

Available options: info, debug. Optional.

Default: info.








Element Host

Contains address and role of monitored server. Attributes:


	address=”<IP address or domain name>

	Server adddress. Mandatory. Special mask [target] could be used here, which means “get from the tank target address”



	port=”<SSH port>”

	Server’s ssh port. Optional.

Default: 22



	python=”<python path>”

	The way to use alternative python version. Optional.



	interval=”<seconds>”

	Metrics collection interval. Optional.

Default: 1 second



	comment=”<short commentary>”

	Short notice about server’s role in test. Optional.

Default: empty



	username=”<user name>”

	User account to connect with. Optional.

Default: current user account.





Example:
<Host address="localhost" comment="frontend" priority="1" interval="5" username="tank"/>




Metric elements

Metric elements in general are set by metrics group name and particular metrics enumeration in attribute measure. Example: <CPU measure=”idle,user,system” />

List of metrics group names and particular metrics in them:


	
	CPU

	
	idle


	user - default


	system - default


	iowait - default


	nice










	
	System

	
	la1 - load average 1 min


	la5 - …


	la15 - …


	csw - context switches, default


	int - interrupts, default


	numproc - process amount in system


	numthreads - threads amount in system










	
	Memory

	
	free - default


	used - default


	cached


	buff










	
	Disk

	
	read  - default


	write - default










	
	Net

	
	recv - bytes received, default


	send - bytes sent,  default


	tx - outgoing packet rate


	rx - incoming packet rate


	retransmit - retransmit amount


	estab - number of sockets in ESTABLISHED state


	closewait - number of sockets in CLOSEWAIT


	timewait - number of sockets in TIMEWAIT










	
	Custom

	
	tail - metric value is read from file’s last line, file path is specified in node text. Example: <Custom measure=”tail” label=”size history”>/tmp/dbsize.log</Custom>


	call - metric value is a command or script execution output. Example: <Custom measure=”call” diff=”1” label=”Base size”>du -hs /usr/mysql/data</Custom>












Custom metrics have an additional attribute diff, that signals to obtain as metric value the difference between previous and current value. So in example above, not the file size, but the dynamic of changes in size will be written.
Also custom metrics must have attribute label, which defines metric short name (only latin). Underline symbol should be avoided.




Monitoring default logic

Default logic is applied on next levels:


	Host level: by default target is derived from address in phantom module.


	Metrics group level: If config contain host address only, without metrics, i.e <Host address=”somehost.yandex.ru” />, then default metrics in groups CPU, Memory, Disk are collected. If host has defined any metric, then only it is collected.


	Metric level: if metrics group is defined without attribute measure, then only default group metrics are collected.







Startup and Shutdown elements

There is special non-metric elements called Startup and Shutdown. Startup shell scripts will be started before metric collection. On the normal shutdown startup scripts will be stopped and shutdown scripts will run. There may be any number of Startup and Shutdown elements.

Following example illustrates this feature:

<Monitoring>
    <Host address="[target]">
        <Startup>cat /dev/urandom | hexdump | awk 'BEGIN {RS="0000"} {print length($0)}' > /tmp/urandom.txt</Startup>
        <Custom measure="tail" label="random int tail">/tmp/urandom.txt</Custom>
        <Custom measure="call" label="random int call">tail -n1 /tmp/urandom.txt</Custom>
        <Shutdown>rm /tmp/urandom.txt</Shutdown>
    </Host>
</Monitoring>

















          

      

      

    

  

    
      
          
            
  
Ammo generators

sample req-style ammo generator (python):

usage: cat data | python make_ammo.py
For each line of ‘data’ file this script will generate phantom ammo.
Line format: GET||/url||case_tag||body(optional)

#!/usr/bin/python
# -*- coding: utf-8 -*-

import sys

def make_ammo(method, url, headers, case, body):
    """ makes phantom ammo """
    #http request w/o entity body template
    req_template = (
          "%s %s HTTP/1.1\r\n"
          "%s\r\n"
          "\r\n"
    )

    #http request with entity body template
    req_template_w_entity_body = (
          "%s %s HTTP/1.1\r\n"
          "%s\r\n"
          "Content-Length: %d\r\n"
          "\r\n"
          "%s\r\n"
    )

    if not body:
        req = req_template % (method, url, headers)
    else:
        req = req_template_w_entity_body % (method, url, headers, len(body), body)

    #phantom ammo template
    ammo_template = (
        "%d %s\n"
        "%s"
    )

    return ammo_template % (len(req), case, req)

def main():
    for stdin_line in sys.stdin:
        try:
            method, url, case, body = stdin_line.split("||")
            body = body.strip()
        except:
            method, url, case = stdin_line.split("||")
            body = None

        method, url, case = method.strip(), url.strip(), case.strip()

        headers = "Host: hostname.com\r\n" + \
            "User-Agent: tank\r\n" + \
            "Accept: */*\r\n" + \
            "Connection: Close"

        sys.stdout.write(make_ammo(method, url, headers, case, body))

if __name__ == "__main__":
    main()





sample POST multipart form-data generator (python)

#!/usr/bin/python
# -*- coding: utf-8 -*-
import requests

def print_request(request):
    req = "{method} {path_url} HTTP/1.1\r\n{headers}\r\n{body}".format(
        method = request.method,
        path_url = request.path_url,
        headers = ''.join('{0}: {1}\r\n'.format(k, v) for k, v in request.headers.items()),
        body = request.body or "",
    )
    return "{req_size}\n{req}\r\n".format(req_size = len(req), req = req)

#POST multipart form data
def post_multipart(host, port, namespace, files, headers, payload):
    req = requests.Request(
        'POST',
        'https://{host}:{port}{namespace}'.format(
            host = host,
            port = port,
            namespace = namespace,
        ),
        headers = headers,
        data = payload,
        files = files
    )
    prepared = req.prepare()
    return print_request(prepared)

if __name__ == "__main__":
    #usage sample below
    #target's hostname and port
    #this will be resolved to IP for TCP connection
    host = 'test.host.ya.ru'
    port = '8080'
    namespace = '/some/path'
    #below you should specify or able to operate with
    #virtual server name on your target
    headers = {
        'Host': 'ya.ru'
    }
    payload = {
        'langName': 'en',
        'apikey': '123'
    }
    files = {
        # name, path_to_file, content-type, additional headers
        'file': ('image.jpeg', open('./imagex.jpeg', 'rb'), 'image/jpeg ', {'Expires': '0'})
    }

    print post_multipart(host, port, namespace, files, headers, payload)









          

      

      

    

  

    
      
          
            
  
Config reference


Android


volta_options (dict)

- (no description).






Appium


appium_cmd (string)

- (no description). Default: appium




port (string)

- (no description). Default: 4723




user (string)

- (no description). Default: ""






Autostop


autostop (list of string)

- list of autostop constraints. Default: []


	[list_element] (string)

	- autostop constraint.


	examples

	
	http(4xx,50%,5)

	stop when rate of 4xx http codes is 50% or more during 5 seconds











	examples

	
	[quantile(50,100,20), http(4xx,50%,5)]

	stop when either quantile 50% or 4xx http codes exceeds specified levels












report_file (string)

- path to file to store autostop report. Default: autostop_report.txt






BatteryHistorian


device_id (string)

- (no description). Default: None


	nullable

	True










Bfg


address (string)

- Address of target. Format: [host]:port, [ipv4]:port, [ipv6]:port. Port is optional. Tank checks each test if port is available.


	examples

	127.0.0.1:8080

www.w3c.org








ammo_limit (integer)

- Upper limit for the total number of requests. Default: -1




ammo_type (string)

- Ammo format. Default: caseline




ammofile (string)

- Path to ammo file. Default: ""


	tutorial_link

	http://yandextank.readthedocs.io/en/latest/core_and_modules.html#bfg








autocases (integer or string)

- Use to automatically tag requests. Requests might be grouped by tag for later analysis. Default: 0


	one of

	
	<N>

	use N first uri parts to tag request, slashes are replaced with underscores



	uniq

	tag each request with unique uid



	uri

	tag each request with its uri path, slashes are replaced with underscores







	examples

	
	2

	/example/search/hello/help/us?param1=50 -> _example_search



	3

	/example/search/hello/help/us?param1=50 -> _example_search_hello



	uniq

	/example/search/hello/help/us?param1=50 -> c98b0520bb6a451c8bc924ed1fd72553



	uri

	/example/search/hello/help/us?param1=50 -> _example_search_hello_help_us












cache_dir (string)

- stpd-file cache directory. If not specified, defaults to base artifacts directory. Default: None


	nullable

	True








cached_stpd (boolean)

- Use cached stpd file. Default: False




chosen_cases (string)

- Use only selected cases. Default: ""




enum_ammo (boolean)

- (no description). Default: False




file_cache (integer)

- (no description). Default: 8192




force_stepping (integer)

- Ignore cached stpd files, force stepping. Default: 0




green_threads_per_instance (integer)

- Number of green threads every worker process will execute. For “green” worker type only. Default: 1000


	tutorial_link

	http://yandextank.readthedocs.io/en/latest/core_and_modules.html#bfg








gun_config (dict)

- Options for your load scripts.


	base_address (string)

	- base target address.



	class_name (string)

	- class that contains load scripts. Default: LoadTest



	init_param (string)

	- parameter that’s passed to “setup” method. Default: ""



	module_name (string)

	- name of module that contains load scripts.



	module_path (string)

	- directory of python module that contains load scripts. Default: ""



	allow_unknown

	True



	tutorial_link

	http://yandextank.readthedocs.io/en/latest/core_and_modules.html#bfg








gun_type (string)

- Type of gun BFG should use. Required.


	tutorial_link

	http://yandextank.readthedocs.io/en/latest/core_and_modules.html#bfg-options



	one of

	[custom, http, scenario, ultimate]








header_http (string)

- HTTP version. Default: 1.0


	one of

	
	1.0

	http 1.0



	1.1

	http 1.1












headers (list of string)

- HTTP headers. Default: []


	[list_element] (string)

	- Format: “Header: Value”.


	examples

	accept: text/html












instances (integer)

- number of processes (simultaneously working clients). Default: 1000




load_profile (dict)

- Configure your load setting the number of RPS or instances (clients) as a function of time, or using a prearranged schedule. Required.


	load_type (string)

	- Choose control parameter. Required.


	one of

	
	instances

	control the number of instances



	rps

	control the rps rate



	stpd_file

	use prearranged schedule file











	schedule (string)

	- load schedule or path to stpd file. Required.


	examples

	
	const(200,90s)

	constant load of 200 instances/rps during 90s



	line(100,200,10m)

	linear growth from 100 to 200 instances/rps during 10 minutes



	test_dir/test_backend.stpd

	path to ready schedule file











	tutorial_link

	http://yandextank.readthedocs.io/en/latest/tutorial.html#tutorials








loop (integer)

- Loop over ammo file for the given amount of times. Default: -1




pip (string)

- pip modules to install before the test. Use multiline to install multiple modules. Default: ""




uris (list of string)

- URI list. Default: []


	[list_element] (string)

	- URI path string.


	examples

	["/example/search", "/example/search/hello", "/example/search/hello/help"]












use_caching (boolean)

- Enable stpd-file caching. Default: True




worker_type (string)

- (no description). Default: ""


	tutorial_link

	http://yandextank.readthedocs.io/en/latest/core_and_modules.html#bfg-worker-type










Console


cases_max_spark (integer)

- length of sparkline for each case, 0 to disable. Default: 120




cases_sort_by (string)

- field for cases data sort. Default: count


	one of

	[count, net_err, http_err]








disable_all_colors (boolean)

- disable colors in full output. Default: False




disable_colors (string)

- (no description). Default: ""




info_panel_width (integer)

- width of right panel. Default: 33




max_case_len (integer)

- max lenght of case name, longer names will be cut in console output. Default: 32




short_only (boolean)

- do not draw full console screen, write short info for each second. Default: False




sizes_max_spark (integer)

- max length of sparkline for request/response sizes, 0 to disable. Default: 120




times_max_spark (integer)

- max length of sparkline for fractions of request time, 0 to disable. Default: 120






DataUploader


api_address (string)

- api base address. Default: https://overload.yandex.net/




api_attempts (integer)

- number of retries in case of api fault. Default: 60




api_timeout (integer)

- delay between retries in case of api fault. Default: 10




chunk_size (integer)

- max amount of data to be sent in single requests. Default: 500000




component (string)

- component of your software. Default: ""




connection_timeout (integer)

- tcp connection timeout. Default: 30




ignore_target_lock (boolean)

- start test even if target is locked. Default: False




job_dsc (string)

- job description. Default: ""




job_name (string)

- job name. Default: none




jobno_file (string)

- file to save job number to. Default: jobno_file.txt




jobno (string)

- number of an existing job. Use to upload data to an existing job. Requres upload token.


	dependencies

	upload_token








lock_targets (list or string)

- targets to lock. Default: auto


	one of

	
	auto

	automatically identify target host



	list_of_targets

	list of targets to lock







	tutorial_link

	http://yandextank.readthedocs.io








log_data_requests (boolean)

- log POSTs of test data for debugging. Tank should be launched in debug mode (–debug). Default: False




log_monitoring_requests (boolean)

- log POSTs of monitoring data for debugging. Tank should be launched in debug mode (–debug). Default: False




log_other_requests (boolean)

- log other api requests for debugging. Tank should be launched in debug mode (–debug). Default: False




log_status_requests (boolean)

- log status api requests for debugging. Tank should be launched in debug mode (–debug). Default: False




maintenance_attempts (integer)

- number of retries in case of api maintanance downtime. Default: 10




maintenance_timeout (integer)

- delay between retries in case of api maintanance downtime. Default: 60




meta (dict)

- additional meta information.




network_attempts (integer)

- number of retries in case of network fault. Default: 60




network_timeout (integer)

- delay between retries in case of network fault. Default: 10




notify (list of string)

- users to notify. Default: []




operator (string)

- user who started the test. Default: None


	nullable

	True








regress (boolean)

- mark test as regression. Default: False




send_status_period (integer)

- delay between status notifications. Default: 10




strict_lock (boolean)

- set true to abort the test if the the target’s lock check is failed. Default: False




target_lock_duration (string)

- how long should the target be locked. In most cases this should be long enough for the test to run. Target will be unlocked automatically right after the test is finished. Default: 30m




task (string)

- task title. Default: ""




threads_timeout (integer)

- (no description). Default: 60




token_file (string)

- API token.




upload_token (string)

- Job’s token. Use to upload data to an existing job. Requres jobno. Default: None


	dependencies

	jobno



	nullable

	True








ver (string)

- version of the software tested. Default: ""




writer_endpoint (string)

- writer api endpoint. Default: ""






Influx


address (string)

- (no description). Default: localhost




chunk_size (integer)

- (no description). Default: 500000




database (string)

- (no description). Default: mydb




grafana_dashboard (string)

- (no description). Default: tank-dashboard




grafana_root (string)

- (no description). Default: http://localhost/




password (string)

- (no description). Default: root




port (integer)

- (no description). Default: 8086




tank_tag (string)

- (no description). Default: unknown




username (string)

- (no description). Default: root






JMeter


args (string)

- additional commandline arguments for JMeter. Default: ""




buffer_size (integer)

- jmeter buffer size. Default: None


	nullable

	True








buffered_seconds (integer)

- Aggregator delay - to be sure that everything were read from jmeter results file. Default: 3




exclude_markers (list of string)

- (no description). Default: []


	[list_element] (string)

	- (no description).


	empty

	False












ext_log (string)

- additional log, jmeter xml format. Saved in test dir as jmeter_ext_XXXX.jtl. Default: none


	one of

	[none, errors, all]








extended_log (string)

- additional log, jmeter xml format. Saved in test dir as jmeter_ext_XXXX.jtl. Default: none


	one of

	[none, errors, all]








jmeter_path (string)

- Path to JMeter. Default: jmeter




jmeter_ver (float)

- Which JMeter version tank should expect. Affects the way connection time is logged. Default: 3.0




jmx (string)

- Testplan for execution.




shutdown_timeout (integer)

- timeout for automatic test shutdown. Default: 10




variables (dict)

- variables for jmx testplan. Default: {}






JsonReport


monitoring_log (string)

- file name for monitoring log. Default: monitoring.log




test_data_log (string)

- file name for test data log. Default: test_data.log






Pandora


buffered_seconds (integer)

- (no description). Default: 2




config_content (dict)

- (no description). Default: {}




config_file (string)

- (no description). Default: ""




expvar (boolean)

- (no description). Default: True




pandora_cmd (string)

- (no description). Default: pandora






Phantom


additional_libs (list of string)

- Libs for Phantom, to be added to phantom config file in section “module_setup”. Default: []




address (string)

- Address of target. Format: [host]:port, [ipv4]:port, [ipv6]:port. Port is optional. Tank checks each test if port is available. Required.


	examples

	127.0.0.1:8080

www.w3c.org








affinity (string)

- Use to set CPU affinity. Default: ""


	examples

	
	0,1,2,16,17,18

	enable 6 specified cores



	0-3

	enable first 4 cores












ammo_limit (integer)

- Sets the upper limit for the total number of requests. Default: -1




ammo_type (string)

- Ammo format. Don’t forget to change ammo_type option if you switch the format of your ammo, otherwise you might get errors. Default: phantom


	tutorial_link

	http://yandextank.readthedocs.io/en/latest/tutorial.html#preparing-requests



	one of

	
	access

	Use access.log from your web server as a source of requests



	phantom

	Use Request-style file. Most versatile, HTTP as is. See tutorial for details



	uri

	Use URIs listed in file with headers. Simple but allows for GET requests only. See tutorial for details



	uripost

	Use URI-POST file. Allows POST requests with bodies. See tutorial for details












ammofile (string)

- Path to ammo file. Ammo file contains requests to be sent to a server. Can be gzipped. Default: ""


	tutorial_link

	http://yandextank.readthedocs.io/en/latest/tutorial.html#preparing-requests








autocases (integer or string)

- Use to automatically tag requests. Requests might be grouped by tag for later analysis. Default: 0


	one of

	
	<N>

	use N first uri parts to tag request, slashes are replaced with underscores



	uniq

	tag each request with unique uid



	uri

	tag each request with its uri path, slashes are replaced with underscores







	examples

	
	2

	/example/search/hello/help/us?param1=50 -> _example_search



	3

	/example/search/hello/help/us?param1=50 -> _example_search_hello



	uniq

	/example/search/hello/help/us?param1=50 -> c98b0520bb6a451c8bc924ed1fd72553



	uri

	/example/search/hello/help/us?param1=50 -> _example_search_hello_help_us












buffered_seconds (integer)

- Aggregator latency. Default: 2




cache_dir (string)

- stpd-file cache directory. Default: None


	nullable

	True








chosen_cases (string)

- Use only selected cases. Default: ""




client_certificate (string)

- Path to client SSL certificate. Default: ""




client_cipher_suites (string)

- Cipher list, consists of one or more cipher strings separated by colons (see man ciphers). Default: ""




client_key (string)

- Path to client’s certificate’s private key. Default: ""




config (string)

- Use ready phantom config instead of generated. Default: ""




connection_test (boolean)

- Test TCP socket connection before starting the test. Default: True




enum_ammo (boolean)

- (no description). Default: False




file_cache (integer)

- (no description). Default: 8192




force_stepping (integer)

- Ignore cached stpd files, force stepping. Default: 0




gatling_ip (string)

- (no description). Default: ""




header_http (string)

- HTTP version. Default: 1.0


	one of

	
	1.0

	http 1.0



	1.1

	http 1.1












headers (list of string)

- HTTP headers. Default: []


	[list_element] (string)

	- Format: “Header: Value”.


	examples

	accept: text/html












instances (integer)

- Max number of concurrent clients. Default: 1000




load_profile (dict)

- Configure your load setting the number of RPS or instances (clients) as a function of time,or using a prearranged schedule. Required.


	load_type (string)

	- Choose control parameter. Required.


	one of

	
	instances

	control the number of instances



	rps

	control the rps rate



	stpd_file

	use prearranged schedule file











	schedule (string)

	- load schedule or path to stpd file. Required.


	examples

	
	const(200,90s)

	constant load of 200 instances/rps during 90s



	line(100,200,10m)

	linear growth from 100 to 200 instances/rps during 10 minutes



	test_dir/test_backend.stpd

	path to ready schedule file











	tutorial_link

	http://yandextank.readthedocs.io/en/latest/tutorial.html#tutorials








loop (integer)

- Loop over ammo file for the given amount of times. Default: -1




method_options (string)

- Additional options for method objects. It is used for Elliptics etc. Default: ""




method_prefix (string)

- Object’s type, that has a functionality to create test requests. Default: method_stream




phantom_http_entity (string)

- Limits the amount of bytes Phantom reads from response. Default: 8M




phantom_http_field_num (integer)

- Max number of headers. Default: 128




phantom_http_field (string)

- Header size. Default: 8K




phantom_http_line (string)

- First line length. Default: 1K




phantom_modules_path (string)

- Phantom modules path. Default: /usr/lib/phantom




phantom_path (string)

- Path to Phantom binary. Default: phantom




phout_file (string)

- deprecated. Default: ""




port (string)

- Explicit target port, overwrites port defined with address. Default: ""


	regex

	d{0,5}








source_log_prefix (string)

- Prefix added to class name that reads source data. Default: ""




ssl (boolean)

- Enable ssl. Default: False




tank_type (string)

- Choose between http and pure tcp guns. Default: http


	one of

	
	http

	HTTP gun



	none

	TCP gun












threads (integer)

- Phantom thread count. When not specified, defaults to <processor cores count> / 2 + 1. Default: None


	nullable

	True








timeout (string)

- Response timeout. Default: 11s




uris (list of string)

- URI list. Default: []


	[list_element] (string)

	- URI path string.



	examples

	["/example/search", "/example/search/hello", "/example/search/hello/help"]








use_caching (boolean)

- Enable stpd-file caching. Default: True




writelog (string)

- Enable verbose request/response logging. Default: 0


	one of

	
	0

	disable



	all

	all messages



	proto_error

	5xx+network errors



	proto_warning

	4xx+5xx+network errors














RCAssert


fail_code (integer)

- (no description). Default: 10




pass (string)

- (no description). Default: ""






ResourceCheck


disk_limit (integer)

- (no description). Default: 2048




interval (string)

- (no description). Default: 10s




mem_limit (integer)

- (no description). Default: 512






ShellExec


catch_out (boolean)

- show commands stdout. Default: False




end (string)

- shell command to execute after test end. Default: ""




poll (string)

- shell command to execute every second while test is running. Default: ""




post_process (string)

- shell command to execute on post process stage. Default: ""




prepare (string)

- shell command to execute on prepare stage. Default: ""




start (string)

- shell command to execute on start. Default: ""






ShootExec


cmd (string)

- command that produces test results and stats in Phantom format. Required.




output_path (string)

- path to test results. Required.




stats_path (string)

- path to tests stats. Default: ""






Telegraf


config_contents (string)

- used to repeat tests from Overload, not for manual editing.




config (string)

- Path to monitoring config file. Default: auto


	one of

	
	<path/to/file.xml>

	path to telegraf configuration file



	auto

	collect default metrics from default_target host



	none

	disable monitoring












default_target (string)

- host to collect default metrics from (if “config: auto” specified). Default: localhost




disguise_hostnames (boolean)

- Disguise real host names - use this if you upload results to Overload and dont want others to see your hostnames. Default: True




kill_old (boolean)

- kill old hanging agents on target(s). Default: False




ssh_timeout (string)

- timeout of ssh connection to target(s). Default: 5s


	examples

	
	10s

	10 seconds



	2m

	2 minutes

















          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _images/tank-architecture.png
Yandex.Tank






_images/tank-bfg.png
thread
thread






_images/monitoring_backward_compatibility_grapf.png
Telegraf plugin configure()

False " ek True

{monitoring]:

contg l

set [monitoring] as
default section
use [monitoring] and

X . True
<monitoring] >

l, ont¢ 7 l

exception

use [telegral]

tank exit

| delete one of configs

eheck,
False ftelograf]™, _True
“ defaut
gt
heck, L Ehecke,
Faise _ fonitoring, True False, fnonioring),_True
“ default . defat
7 %
: ! {setimonitorng] | | ] | !
3 ] | delaut targel | | : i exception ]
B | Clolelga | usellclegal. | delets one of options' |
3 < ; | default targer | (et IaIG | tank exit !






_images/overload-screen.png
Quantiles

1626 1627 1628 1629 16:30 1631 1632 1633 1634 1635 1636 1637 1638 1639 16:40 1641

— s MNosx WNosx Wioox WMesx WNsox WN75% M S0%





_static/ajax-loader.gif





_images/tank-lifecycle.png
core reads configs

configieegy—— load and configure plugins
prepare || test data preparing
test external resources preparing and configuring
s || start of test
test start external processes
wait

test finished [~ wait for test finish.

end test stop
test external processes stop.

artifacts collection
- report generation, test results uploading
remove temp files

post
process

end





_images/tank-stepper.png
file for
phantom

configuration

17
ammofile

test
schedule






_static/comment-bright.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Yandex.Tank’s documentation!
        


        		
          Getting started
          
            		
              Getting Help
            


            		
              What are the Yandex.Tank components?
            


            		
              Running Yandex.Tank
            


            		
              See also
            


          


        


        		
          Installation
          
            		
              Docker container
            


            		
              Installation from PyPi
            


            		
              Installation .deb packages
            


          


        


        		
          Routing and firewall
          
            		
              Firewall
            


            		
              Routing
            


            		
              Tuning
            


          


        


        		
          Tutorials
          
            		
              Preparing requests
              
                		
                  Access mode
                


                		
                  URI-style, URIs in load.yaml
                


                		
                  URI-style, URIs in file
                


                		
                  URI+POST-style
                


                		
                  Request-style
                


              


            


            		
              Run Test!
            


            		
              Results
            


            		
              Tags
            


            		
              SSL
            


            		
              Autostop
              
                		
                  HTTP and Net codes conditions
                


                		
                  Average time conditions
                


              


            


            		
              Logging
            


            		
              Results in phout
            


            		
              Graph and statistics
            


            		
              Precise timings
            


            		
              Thread limit
            


            		
              Dynamic thread limit
            


            		
              Custom stateless protocol
            


            		
              Gatling
            


          


        


        		
          Advanced usage
          
            		
              Command line options
            


            		
              Advanced configuration
              
                		
                  Default configuration files
                


                		
                  The DEFAULT section
                


                		
                  Multiline options
                


                		
                  Referencing one option to another
                


                		
                  Time units
                


                		
                  Shell-options
                


              


            


            		
              Artifacts
            


            		
              Sources
            


            		
              load.ini example
            


          


        


        		
          Modules
          
            		
              TankCore
              
                		
                  Architecture
                


                		
                  Test lifecycle
                


                		
                  Options
                


                		
                  consoleworker
                


                		
                  apiworker
                


                		
                  exit codes
                


              


            


            		
              Load Generators
              
                		
                  Phantom
                


                		
                  JMeter
                


                		
                  BFG
                


                		
                  Pandora
                


              


            


            		
              Artifact uploaders
              
                		
                  Yandex.Overload
                


              


            


            		
              Handy tools
              
                		
                  Auto-stop
                


                		
                  Telegraf
                


                		
                  Console on-line screen
                


                		
                  Aggregator
                


                		
                  ShellExec
                


                		
                  Resource Check
                


                		
                  RC Assert
                


                		
                  Tips&Tricks
                


                		
                  BatteryHistorian
                


                		
                  SvgReport
                


              


            


            		
              Deprecated
              
                		
                  Monitoring
                


              


            


          


        


        		
          Ammo generators
        


        		
          Config reference
          
            		
              Android
              
                		
                  volta_options (dict)
                


              


            


            		
              Appium
              
                		
                  appium_cmd (string)
                


                		
                  port (string)
                


                		
                  user (string)
                


              


            


            		
              Autostop
              
                		
                  autostop (list of string)
                


                		
                  report_file (string)
                


              


            


            		
              BatteryHistorian
              
                		
                  device_id (string)
                


              


            


            		
              Bfg
              
                		
                  address (string)
                


                		
                  ammo_limit (integer)
                


                		
                  ammo_type (string)
                


                		
                  ammofile (string)
                


                		
                  autocases (integer or string)
                


                		
                  cache_dir (string)
                


                		
                  cached_stpd (boolean)
                


                		
                  chosen_cases (string)
                


                		
                  enum_ammo (boolean)
                


                		
                  file_cache (integer)
                


                		
                  force_stepping (integer)
                


                		
                  green_threads_per_instance (integer)
                


                		
                  gun_config (dict)
                


                		
                  gun_type (string)
                


                		
                  header_http (string)
                


                		
                  headers (list of string)
                


                		
                  instances (integer)
                


                		
                  load_profile (dict)
                


                		
                  loop (integer)
                


                		
                  pip (string)
                


                		
                  uris (list of string)
                


                		
                  use_caching (boolean)
                


                		
                  worker_type (string)
                


              


            


            		
              Console
              
                		
                  cases_max_spark (integer)
                


                		
                  cases_sort_by (string)
                


                		
                  disable_all_colors (boolean)
                


                		
                  disable_colors (string)
                


                		
                  info_panel_width (integer)
                


                		
                  max_case_len (integer)
                


                		
                  short_only (boolean)
                


                		
                  sizes_max_spark (integer)
                


                		
                  times_max_spark (integer)
                


              


            


            		
              DataUploader
              
                		
                  api_address (string)
                


                		
                  api_attempts (integer)
                


                		
                  api_timeout (integer)
                


                		
                  chunk_size (integer)
                


                		
                  component (string)
                


                		
                  connection_timeout (integer)
                


                		
                  ignore_target_lock (boolean)
                


                		
                  job_dsc (string)
                


                		
                  job_name (string)
                


                		
                  jobno_file (string)
                


                		
                  jobno (string)
                


                		
                  lock_targets (list or string)
                


                		
                  log_data_requests (boolean)
                


                		
                  log_monitoring_requests (boolean)
                


                		
                  log_other_requests (boolean)
                


                		
                  log_status_requests (boolean)
                


                		
                  maintenance_attempts (integer)
                


                		
                  maintenance_timeout (integer)
                


                		
                  meta (dict)
                


                		
                  network_attempts (integer)
                


                		
                  network_timeout (integer)
                


                		
                  notify (list of string)
                


                		
                  operator (string)
                


                		
                  regress (boolean)
                


                		
                  send_status_period (integer)
                


                		
                  strict_lock (boolean)
                


                		
                  target_lock_duration (string)
                


                		
                  task (string)
                


                		
                  threads_timeout (integer)
                


                		
                  token_file (string)
                


                		
                  upload_token (string)
                


                		
                  ver (string)
                


                		
                  writer_endpoint (string)
                


              


            


            		
              Influx
              
                		
                  address (string)
                


                		
                  chunk_size (integer)
                


                		
                  database (string)
                


                		
                  grafana_dashboard (string)
                


                		
                  grafana_root (string)
                


                		
                  password (string)
                


                		
                  port (integer)
                


                		
                  tank_tag (string)
                


                		
                  username (string)
                


              


            


            		
              JMeter
              
                		
                  args (string)
                


                		
                  buffer_size (integer)
                


                		
                  buffered_seconds (integer)
                


                		
                  exclude_markers (list of string)
                


                		
                  ext_log (string)
                


                		
                  extended_log (string)
                


                		
                  jmeter_path (string)
                


                		
                  jmeter_ver (float)
                


                		
                  jmx (string)
                


                		
                  shutdown_timeout (integer)
                


                		
                  variables (dict)
                


              


            


            		
              JsonReport
              
                		
                  monitoring_log (string)
                


                		
                  test_data_log (string)
                


              


            


            		
              Pandora
              
                		
                  buffered_seconds (integer)
                


                		
                  config_content (dict)
                


                		
                  config_file (string)
                


                		
                  expvar (boolean)
                


                		
                  pandora_cmd (string)
                


              


            


            		
              Phantom
              
                		
                  additional_libs (list of string)
                


                		
                  address (string)
                


                		
                  affinity (string)
                


                		
                  ammo_limit (integer)
                


                		
                  ammo_type (string)
                


                		
                  ammofile (string)
                


                		
                  autocases (integer or string)
                


                		
                  buffered_seconds (integer)
                


                		
                  cache_dir (string)
                


                		
                  chosen_cases (string)
                


                		
                  client_certificate (string)
                


                		
                  client_cipher_suites (string)
                


                		
                  client_key (string)
                


                		
                  config (string)
                


                		
                  connection_test (boolean)
                


                		
                  enum_ammo (boolean)
                


                		
                  file_cache (integer)
                


                		
                  force_stepping (integer)
                


                		
                  gatling_ip (string)
                


                		
                  header_http (string)
                


                		
                  headers (list of string)
                


                		
                  instances (integer)
                


                		
                  load_profile (dict)
                


                		
                  loop (integer)
                


                		
                  method_options (string)
                


                		
                  method_prefix (string)
                


                		
                  phantom_http_entity (string)
                


                		
                  phantom_http_field_num (integer)
                


                		
                  phantom_http_field (string)
                


                		
                  phantom_http_line (string)
                


                		
                  phantom_modules_path (string)
                


                		
                  phantom_path (string)
                


                		
                  phout_file (string)
                


                		
                  port (string)
                


                		
                  source_log_prefix (string)
                


                		
                  ssl (boolean)
                


                		
                  tank_type (string)
                


                		
                  threads (integer)
                


                		
                  timeout (string)
                


                		
                  uris (list of string)
                


                		
                  use_caching (boolean)
                


                		
                  writelog (string)
                


              


            


            		
              RCAssert
              
                		
                  fail_code (integer)
                


                		
                  pass (string)
                


              


            


            		
              ResourceCheck
              
                		
                  disk_limit (integer)
                


                		
                  interval (string)
                


                		
                  mem_limit (integer)
                


              


            


            		
              ShellExec
              
                		
                  catch_out (boolean)
                


                		
                  end (string)
                


                		
                  poll (string)
                


                		
                  post_process (string)
                


                		
                  prepare (string)
                


                		
                  start (string)
                


              


            


            		
              ShootExec
              
                		
                  cmd (string)
                


                		
                  output_path (string)
                


                		
                  stats_path (string)
                


              


            


            		
              Telegraf
              
                		
                  config_contents (string)
                


                		
                  config (string)
                


                		
                  default_target (string)
                


                		
                  disguise_hostnames (boolean)
                


                		
                  kill_old (boolean)
                


                		
                  ssh_timeout (string)
                


              


            


          


        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





